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Introduction: Many-Body Physics with Cold Atoms

( Q: What can cold atoms add to many body physics? J

New models of own interest

- Bose-Hubbard model

- Strongly interacting continuum systems: BCS-BEC Crossover; Efimov effect

- systems with long range interactions (polar molecules, Rydberg atoms), eg. 1/rA3
Quantum Simulation: clean/ controllable realization of model Hamiltonians which are

- less clear to what extent realized in condensed matter e.g. 2d Fermi-

- extremely hard to analyze theoretically Hubbard model
Nonequilibrium Physics of closed systems: time dependence

- Condensed matter: fast equilibration, thermodynamic equilibrium stationary state physics.
- Cold atoms: study dynamical evolution, e.g, quench dynamics, thermalization dynamics

Nonequilibrium Physics of open systems: Driven-dissipative many-body equilibria

- go beyond coherent manipulation of many-body systems: add drive and controlled dissipation
- merge techniques from quantum optics and many-body physics




Lecture Outline

e Here we concentrate on one of these key aspects: The transition to
macrophysics starting from well-controlled, clean microphysics A 1

* Continuum systems:

* Scales and interactions, Effective theories for atomic gases L |
Bose-Einstein Condensation

* The cornerstones of quantum condensation phenomena:

* Weakly interacting Bosons, Bose-Einstein condensation

* Weakly interacting Fermions, BCS instability

MIT, 2005 vortices
* Synthesis: Strong interactions, the BCS-BEC crossover in

Functional RG framework

* Basic picture: The crossover phase diagram

07 0 -0.25
<«— BEC nteraction parameter 1/k a BCS —™

* Closer look at various scales: from scattering amplitudes to

critical behavior Fermion Superfluidity

* Lattice systems: T b ;
* The Bose-Hubbard model in optical lattices b Ak »

* Phase Diagram: Mott insulator - superfluid transition
* FRG approach to strongly correlated lattice systems

* BCS-BEC analog for bosons on the lattice: Ising type quantum Mott insulator - superfluid
phase transition transition
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Scales and Interactions in
Ultracold Quantum Gases




Hamiltonian for weakly interacting ultracold bosonic atoms

e Qur workhorse Hamiltonian is
H = szn =+ Htrap = Hz'nt
e With ingredients:

- Kinetic energy: motion of nonrelativistic particles

2
Huin = [ ok~ 5 )ax = [ dh(5)aq
x q

2m 2m

after Fourier transform aq = / e'Pq, [ aT] =d(x—y) (bosons)

- Trapping potential: the local density experiences a local potential energy

Hivap = / V(x)ix, V(x)=1mw’x’

fix = Glix  density operator

- Local two-body interactions:

contact interaction




Microscopic Origin of the Interaction Term

model potential with

same scattering length — <
S - |
rue interatomic
e Microscopic scattering physics: Lennard-Jones (LJ) potential potential U(x)
- 1/7“12 hard core repulsion: repulsion of electron clouds r¢p = O(ap) X

- 1/r% attraction: van der Waals (induced dipole-dipole interaction)
roaw = (50...200)ap for alkalis: typ. order of magnitude for interaction length scale

e (General properties of LJ type potentials at low energies:

- isotropic s-wave scattering dominates; the scattered wave function behaves asymptotically asy(x) ~ a/

- a is the scattering length. Knowledge of this single parameter is sufficient to describe low
energy scattering!

- within Born approximation, it can be calculated as

M interatomic potential
ABorn ™~ / U(X)
X

=very different interaction potentials may have the same scattering length!




The Model Hamiltonian as an Effective Theory

H = [ [a(~ 5+ Via))ax -+ 7]

Efficient description by an effective Hamiltonian with few parameters.

For ultracold bosonic alkali gases, a single parameter, the scattering length a, is
sufficient to characterize low energy scattering physics of indistinguishable particles :

Effective interaction
8 h?

g p—
m
A typical order of magnitude for the scattering length is
a=Oryaw), Tvaw (50...200)ap

For bosons, we must restrict to repulsive interactions a > 0 (else: bosons seek solid
ground state, collapse in real space)

a

The validity of the model Hamiltonian is restricted to length scales

[ > rygw

So far: microscopic description; now: many body scales!

= Finite temperature T; finite density n




BEC: Statistical Mechanics of Noninteracting Bosons

* An ensemble of noninteracting bosons in free space is described in the grand canonical
ensemble:

total particle number
in general: H — H — ,MNM
~ VAN q2
free particles: Hy;,, — Hyir, — N = aT — — — l)ax = aT — — ula
e Statistical properties described by the Free Energy:
1 N
U=kgTlogZ, 7 =trexp kBT(H—,uN) uw<0
i chemical potential
temperature //

* The chemical potential adjusts the average particle number via the equation of state:

oU / / dq 1
N=—— = alay) = alay) = V/ 5
alu < q q q> q< q q> (27-‘-)61 ek;BlT(Qq—m_'u’) B 1

Bose-Einstein //

distribution




Bose-Einstein Condensation (3D)

e Lower T and study the behavior of x at fixed n (3D): d =3
i T N 1
T=0 / e,%T(m— ) 4
% = AJE(T)gg/z(e“/’“BT) e P?&%irgr:na
B3
e Atafinite T, u hits zero: below this T, the equation of state has no solution n=1

e Bose and Einstein (1925): Equation below 7. needs modification due to macroscopic
occupation of zero mode: E,

d
_ d’q 1
62kaT —_ 1

- plausible: Bosons can populate single quantum state with arbitrary number
= macroscopic: Ng = <a$ao> = O(N) x V, i.e. extensive q
- critical temperature: determined by

nAjp = g32(1) = ((3/2) = 2.612

de Broglie wavelength @(QWFLZ/kaT)l/Q z d — @ intseprgsirrt]igle
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Validity of our Hamiltonian: Scales in Cold Dilute Bose Gases

e | The effective Hamiltonian is valid because none of many-body length scales can re-
solve interaction length scale :

e Many-body scales: density and temperature in terms of length scales.
- diluteness a/d < 1 (d = n=1/3)
+ dilute means weakly interacting: interaction energy gn ~ a/d - d*
x Clear: three-body interaction terms irrelevant
- quantum degeneracy: d/\;g < 1 (A\gp = (27h? /mkpT)/?)
- trap frequencies: \yp/losc < 1 (lose = 1/1/m/2w)

Aap = (27h° /mkpT)"/?

<« > a << d < )\d B
NP
—92 :
Summary of length scales ag = 9.3 X 10" “nm Bohr radius
scattering length interparticle sep. de Broglie w.l. trap size
length
eng a/ap d/ap A\iB/aB losc/ap
(0.05 ... 0.2)1013 (0.8 ... 3)1013 (10 ... 40)1013 (3 ... 300)1073
phys. meaning of the . : : L
weak interactions/ gquantum degeneracy local density approximation

ratio:

dilute gases

11



Violations of the scale hierarchy

e Generic sequence of scales and possible violations:
G O O O O OO OO

A
o 1 T r
interaction scale interparticle spacing  de Broglie wavelength (Oscillator length of trap)

| ]

Feshbach resonance

I o |

optical lattice spacing

e With Feshbach resonances, violation of a/d << 1 possible: Dense degenerate system

e With optical lattices, a new length and a new energy scale are introduced:
e lattice spacing = wavelength of light: high densities (“fillings) become available
e |attice depth: Kinetic energy is withdrawn more strongly than interaction energy: “strong correlations”

® Both leads to the possibility of “strong interactions/correlations” as we will see

* NB: Despite violation of scale hierarchy for dilute quantum gases, we will be able to
give accurate microscopic models

12



Weakly Interacting Bosons




Effective Action

e grand canonical workhorse Hamiltonian (no trap)

HI6()1600] = [ [0 (- L )é) + 9(dx)1d(x))?]

e the associated euclidean classical action for the nonrelativistic problem is (CI? — (7' 3 X))

Sl (@) (o] = | ar [( / di’)x@*(x)aﬂo(x)) + Hp* (2), ol@)

e and the many-body quantum problem can be formulated e.g. in terms of the effective action

oL'|¢", ¢]

So(x)

exp —L'[¢", ¢] = /9(590*, op)exp —=S|p" + 6™, ¢ + Iy,

e Discussion: \

* ¢ = (() is the classical field/field expectation value

field equation

The effective action can be understood “classical action plus fluctuations”. It lends itself to
semiclassical approximations (small fluctuations around a mean field)

NB: Action principle is leveraged over to full quantum status
Symmetry principles are leveraged over from the classical action to full quantum status

14



Generalities of the Microscopic Action

e The classical action is

Sl 6l = [t [ @ [ola) @ — F7 — wola) + 46" (@)@

e Symmetries:

- obviously, Lorentz invariance replaced by Galilei invariance. Different power counting, since w ~ q?:
The dynamic exponent z = 2 and the canonical dimension of the Lagrangian d + z = 5.

- Unlike relativistic models, the temporal derivative term is a pure phase

([ olayoro@)” == [ ota) o6

- I.e. relation to classical statistical model less clear
- Global phase rotation invariance U (1) with linear time derivative gives particle number conservation
- A further interesting symmetry is a temporally local gauge invariance

d(z) = TDo(z), ¢*(v) — e D™ (), p— p+i0(7)

- with physical consequences: see Bose-Hubbard model!

15



The Gross-Pitaevski Equation

e Continue analytically the imaginary time classical action S to the real axis (at 7' = 0 or 8 — o0):
T —it, ¢(1,x) = o(t,x) =

Slo7, 6] —iS[67,6) =i [ dt [ x| ¢ (£, %)(~i0 — F7 — WAt %) + §(8" (1, 2)d(t,2))?]

e The Gross-Pitaevski equation is the field equation for the real time classical action §5/d¢*(t,x) = 0
10:0(t,x) = (= g7 2 — p+ 9" (1, x)(t, %)) 6 (t, x)

e Remark: “classical” refers to the absence of fluctuations. Physically, the global phase coherence
implied in this equations is a quantum mechanical effect, with observable consequences: cf. discussion
of quantized vortices

Complex time plane

16



Interpretation: Macroscopic Wave Function

e (Gross-Pitaevski Equation (with trap):

2

Oup(x,1) = (= 50— 4 VI(x) + g (. 1) (x, 1)) ol 1

* Properties:

Classical field equation (cf. classical electrodynamics vs. QED)

for g = 0, or single particle: formally recover linear Schrodinger equation -> expect

quantum behavior; interpret (0 as “macroscopic wave function”
however, in general nonlinear -> richer than Schrddinger equation

e |nterplay of quantum mechanics and nonlinearity: quantized
vortex solutions

uniform case V(x) = 0, search static cylinder symmetric solutions with no z

dependence: Minteger, such that phase
06 returns after 2 pi: unique Wave
QO(X, t) — 90(7“, (ﬁ) — f(?“)e function
GP equation:
h2 ” f/ £2f 5
0:—%(]0 +7_,,,._2) —puf+gf

large distances: constant solution, determine chemical pot.

short distances: condensate amplitude must vanish due to
centrifugal barrier, in turn rooted in the quantization of the
phase

h

V2magn

coherence length

vortex solution

17



Mean Field Action and Spontaneous Symmetry Breaking

Specialize to homogeneous action: time- and space independent amplitudes ( / drd’xz =V/T --
guantization volume)

S(6",6) = V/T(<p6" 6 + (6" 0)"

) -

effective potential U
homogeneous GPE or equilibrium condition for the classical field:

oU .
0= 54+ = (—n+99"9)
particle density: 5
v _ .
n = —% = ¢ ¢

Geometrical interpretation: Mexican hat potential

e for the ground state, the system chooses spontaneously the
direction: spontaneous symmetry breaking (symmetry: global
phase rotations U(1))

e Radial (amplitude) excitations: cost energy, gapped mode

e anqgular (phase) excitations: no energy cost due to ~~*
gular (phase) gy /7%%%4/]\[ ¢

degeneracy, gapless Goldstone mode

The radial (amplitude) and angular (phase) excitations can be identified explicitly in the quadratic
fluctuations (see below)

18



Quadratic Fluctuations: Bogoliubov Theory

e We go one step beyond the classical limit and include quadratic fluctuations on top of the mean field

e Expansion of S in powers of (d¢*, dp) around (dp*, dp) = (0, 0) yields the approximate effective action
(saddle point approximation):

Llg*, ¢] = —log [ D(d¢*,dp)exp —=S[p* + 0p*, ¢ + 6]

~ S[¢*, ¢] — log [ D(6¢*, d¢) exp —3 [(5¢p, 5p*)S 2 [p*, ¢] ( 55; )

Here, we have used the field equation §5/6(dp) = d5/6¢p =0

e We restrict to the homogeneous case ¢(7,x) = ¢ for the condensate mean field. Then, the exponent
reads in Fourier space (Q = (wn,q), fQ =>. T %):

1 § “2 iy L 1 2g0 J
Se=; [ Go@o@Q) (| @000 Tl 2dhe ) (L 02@) )
Q lwn + 535 — &+ 2905¢0 9% Y
where we have to insert the solution of the homogeneous field equation 0 = g—g L= (—p+ goddo)dg
, 1.8, 1= goydo. |

e NB: The remaining functional integral is Gaussian and can be done exactly. One can calculate rough
estimates for e.g. the interaction induced density depletion at zero temperature from it.




The Excitation Spectrum

® The excitation spectrum / dlsperS|on relation obtains from the poles of the propagator
G, or the zeroes of S = G~ L (analytically continued to real continuous
frequencies 2 = iwy,)

det G™H(E = iw, q) =0 = bq = \/Gq(eq + 2gp0)

e Discussion:

- At low momenta, this is linear and gapless, reminiscent of |
acoustic phonons or relativistic dispersions barticles

Ly q30 clq|, c=4/%%

™m
\ speed of sound

- At high momenta, like free particles: quadratic phonons

q—> 00 o q2
S =
. s p

- The regimes are separated by the “healing” momentum scale

qn = V2me = \/2gmpq h

—1
- Its inverse is the “healing length” En = 4y, which is e.g. the characteristic size of a vortex,
where the homogenous condensate “heals” (see above).

z(p)

20



Phase and Amplitude Fluctuations

e We analyze the quadratic action for the boson fluctuations, using —u = g¢*¢

1 . g2 —iwn + €q + gP5d0 0p(Q)
Sr [590 590] 2/@(590(_62)7590 (Q)> ( iwn‘|‘€q3‘g¢8¢0 g?b% ° ) ( 590*(_@) )

e We perform a change of basis (real and imaginary parts),
5p1(Q) = (69" (—Q) + 50(Q))/V2, dp2(Q) =i(6¢"(Q) — 5p(—Q))/V2

e The action in the new coordinates reads (py = ¢;¢0 and we choose ¢ real without loss of generality)

Sr[op1,0pa] = / (6p1(—Q), 6p2(Q ’ ) 6(30921

— Real part: amplitude fluctuations (see figure); these are gapped masswe) with 2gpq
— Imaginary part: phase fluctuations; these are gapless (massless)

Bottom of Mexican A

Mexican hat potential hat potential

= QOrigin of the phonon mode: fluctuations of the phase
= More generally, phonon mode is manifestation of Goldstone theorem in nonrel. system

21



Physical Significance: Phonon Mode and Superfluidity

e | andau criterion of superfluidity: frictionless flow

e Weakly interacting Bose gas: Superfluidity through linear phonon excitation

- Gedankenexperiment: move an object through a liquid with velocity v.

- Landau: the creation of an excitation with momentum p and energy €y, is energetically

unfavorable if

€
V< Ve = —
P

=in this case, the flow is frictionless, i.e. superfluidity is present

gno

ep = c|pl,c =14/ L2 v, =c
Free Bose gas: No superfluidity due to soft particle excitations
2
&
€p = o > V. = 0

= Superfluidity is due to linear spectrum of quasiparticle excitations

particles

NN

lphonons

-

22



additional material

|dea of Landau Criterion Tframe of reference of the
A V moving object
. . L L — >
e Consider moving object in the liquid ground state of a system ®
>

e Question: When is it favorable to create excitations?

frame of reference of the E
>

e (General transformation of energy and momentum under ground state system
Galilean boost with velocity v
>: E, p ;total system mass

: E' =FE-pv+iMv’, p'=p—Mv
* Energy and momentum of the ground state in
2 EO) Po = 0

¥ b=FEo+iMv?®, py=-Mv

* Energy and momentum of the ground state plus an excitation with momentum, energy p, €,
2 Bex =Eog+€p, Pex =P
¥: El =FEy+e —pv+iMv?, p.L.=p—Mv
e (Creation of excitation unfavorable if
Blh—Eg=ep—pv>ep—[pllV[>0 = v <, = %P

23



Validity of Bogoliubov Theory

* The ordering principle of the semiclassical approximation is the existence of a
macroscopic (extensive) condensate, i.e.:

I'o7,

S[¢* + 6p*, ¢+ 8
hcb] :/D(M*’M)exp_ 0" + 09", ¢ 4 0y

h

exp —

b ~ N/2 V1/2, 5 ~ NO the ordering principle is not
h — 0

e QObviously, Bogoliubov theory breaks down if no condensate exists. This situation
appears for

d=1 allT Mermin-Wagner theorem plus
dimensional reduction
d=2, T >0

* |nthese cases, immediate need for nonperturbative approaches such as (functional)
RG (Castellani& 04, Wetterich & ‘08,’09; Kopietz & '08,’10; Dupuis ’'09)

® even in d=3, or d=2,T=0, one should be suspicious since in the range of small
momenta the power counting is questionable:

Ng = /<59023580Q> ~1/Eq ~1/|q divergent occupation number

— dp ~ 1/|q/'? 7!

24



Validity of Bogoliubov Theory

We study perturbative corrections to the self-energy for weakly interacting bosons (zero temperature):
The full quadratic part of the effective action is (@ = (w,q) )

r-; /Q (¢(-Q). " (Q)) ( - —iw %;{22 )+ 5 (Q) ) ( Q) )

We may view Bogoliubov Theory as the zero order self energies
E%O)(Q) = 2gpo, Eg(fr)m) (Q) = gpo po = gbggbo

The leading pertrubative corrections are shown diagrammatically. The second diagram has in IR di-
vergence (log in d=3, poly in d<3)

Q) ~Z0N(Q) ~ —g%po /K G2a(K)G2(Q + K), Gn(Q)= 290

o w2 + 02q2
Perturbation theory breaks down for
S (Q)] = [Z50,(Q))

K K+Q

@ Q

infrared regular Q @, K infrared divergent!

first order perturbation theory

25



Weakly and Strongly Correlated Superfluid
e Perturbation theory breaks down for
S (Q)] = [25,(Q)]

from which we deduce the scale where the superfluid becomes nonperturbative/strongly correlated

S G if d<3
P exp(—ﬁ) lf d = 3

e The dimensionless ratio g expresses the ratio of interaction versus kinetic energy in the nonrelativistic
superfluid (|g] = 2 — d):
Epot L gpo

- _ 1-2/d
I Bm 1/ (M)

= gMp, " ~ (pnt)?

where ¢ ~ n~1/% js the mean interparticle distance and n ~ py in the weakly interacting condensate

e Thus, superfluids can be classified according to:

- weakly correlated if § < 1 = p,, < prn < €71, Bogoliubov theory is valid for a large part of the
spectrum, namely for momenta |q| 2 p,,. This is the case in typical traps.

- strongly correlated if g > 1 = p,, ~ pr, = £~'. Bogoliubov theory breaks down. This may happen

on the lattice close to the Mott insulator — superfluid phase transition.

typical scales in a trap: trap provides IR -~ -
cutoff towards strong correlated regime visualization of the scales

; : | | f j, --vortex size

/ En ~ 1/pp Enp ~ 1/pnp Qosc -- extent of cloud

26




Weakly Interacting Fermions

(V1) = () =0
(P19py) # O

NN

l‘- ------------------------




Free Fermions and Fermi Momentum

e (Collection of some useful formulae and abbreviations for 3D two-component fermions:
®* The equation of state for free fermions at zero temperature:

3/2 3
d> €q—H _1 T—0 d? _ @Mp)*= kg
n=2 [ Ehep(spt + )7 2 [ e - = Sl = 0
two spin states
e The Fermi momentum k_F is defined as the momentum scale associated to the
chemical potential of free fermions at T =0 g
_ free)\1/2
ke = (2M pyg))
4)
kp 4

* |tis a measure for the total density of a fermion system, and therefore for the mean
interparticle spacing:

d = (3n%)" kg

®* The associated energy and temperature scales are the Fermi energy and the Fermi temperature

k% €EF

TEoar T
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Physical Picture for Weakly Attractive Fermions

* The low temperature physics of free fermions is governed Fermi distribution at low T

by the Pauli principle Ng = (GX]D(%IT_/l | 1)_1

>

(1) Expression of a Fermi sphere in momentum space
(2) Absence of fermion condensation: <¢g> =0 o=7,]

(3) Local s-wave interactions of fermions are only possible for
more than one spin state (ultracold atoms: hyperfine states)

q
Fermi momentum kr = (QMlugfr:eg))l/Q

* Now we allow for weak 2-body s-wave attraction between 2 spin states of fermions

a <0 lakp| ~ |a/d| < 1

attractive scattering length weakness/diluteness condition

e A small interaction scale will not be able to substantially modify the Fermi sphere.
This is the key to BCS theory

29



Physical Picture for Weakly Attractive Fermions

‘akF‘hu‘a/d‘<<:1 Fermi distribution at low T

A
e A small interaction scale will not be able to substantially Ngq

modify the Fermi sphere

* However, pairing of fermions with momenta close to the
Fermi surface is possible: “Cooper pairs”:

* These fermions attract each other with strength a k la
* The total energy of the system is lowered when

q

: : : Fermi surface
- bosonic pairs with zero cm energy (total momentum

zero) form: local in momentum space

- These pairs condense, i.e. occupy a single quantum
state macroscopically:

(P19y) # O

e Comments: ¢
e Distinguish pairing correlation from Bose condensation <90> 75 0 Cooper pairing: Local in
e But: in both cases, spontaneous breaking of U(1) symmetry momentum space

30



RG Argument for BCS Instability

_ T  two-component
@b T (¢T7 wi) Spinor

e Purely fermionic description ~ S[y] = /dT/d3${¢T (37 — % — M)¢ + %(¢T¢)2}

 RG Equation with dominant particle-particle loop:

Q particle-particle channel
1

QQ P2 K+ Q1+ Qo

e Choose cutoff that approaches Fermi surface (FS) = IR limit for
fermions shell by shell as displayed

. see R. Shankar ’93, “Renormalization Group
’ StUdy flow of the vertex )\(Ql’ QQ’ Pl’ PQ) approach to interacting Fermions”

» Since the coupling is small, generically the renormalization effects are perturbatively small

e But the one with opposite spatial momenta and energies on the FS renormalizes strongly:
The integral (zero temperature) is logarithmically divergent for kK — 0

A=ANQ1 = Q2 P = —DP) spatial momenta opposite

e The divergence drives the system to strong coupling for attractive interactions A;, < O
A physical instability against pairing occurs

31



BCS Instability

 Restricting to the single strongly flowing coupling on the FS, we have a simple quadratic beta-function

a>< >©< OxMe = —AE O I (T, 1)

e Solution for £k — 0

e a finite temperature acts as physical IR cutoff. For low temperatures,
Ip(T — 0, u>0)~—logT/pu>0

* Thus, for arbitrarily attractive interaction, a critical temperature exists where the interaction diverges.
* A more detailed analysis, including a proper UV Renormalization, yields (d=3, a the scattering length)

0= —% ~ %/dq [q2 _QZMM tanh <q2/(2ng) _”)> _ 1]

* The resulting critical temperature is

1 87 — 5T Euler constant ¥ ~ 1.78
an Te? prefactor =~ (.61

32



Experimental (Ir)relevance of Weakly Interacting Atomic
Fermions

e We compare the critical temperatures for a noninteracting BEC and weakly
attractive fermions

- Free bosons of mass M undergo condensation at nAgz = ((3/2), Aap = (27/(MT))'/?

- Rewrite by using definitions from fermions n = & /(37°), ep = ki /(2M)

(BEC)
c = 47 (372¢(3/2)) "3 =~ 0.69 = O(1)

cr

- In contrast, the BCS critical temperature is exponentially small for akp < 1

(BCS)

8 _ ™ ™
_ o7 e 2lekrl ~ ().0le Z2lekrl
€ me?

e additionally, cooling of degenerate fermions is experimentally more challenging
due to Pauli blocking

* On the other hand, note a (formal) exponential increase of T_c for rising CLkF l.e.

towards strong interactions
* Q: What is the fate of the exponential increase in T_c for rising CLk’F
e A: BCS-BEC crossover

33



Strong Interactions
and

the BCS-BEC Crossover




Physical picture: BCS-BEC Crossover

e We have discussed two cornerstones for quantum condensation phenomena:

e fermions with attractive interactions » weakly interacting bosons

= BCS superfluidity at low T = Bose-Einstein Condensate (BEC) at low T

bosons could be realized as
tightly bound molecules
(“effective theory”)

35



Physical picture: BCS-BEC Crossover

e We have discussed two cornerstones for quantum condensation phenomena:

e fermions with attractive interactions » weakly interacting bosons

= BCS superfluidity at low T = Bose-Einstein Condensate (BEC) at low T

bosons could be realized as
tightly bound molecules
(“effective theory”)

0 (akp) ™!
e There is an experimental knob to connect these scenarios: Feshbach resonances

* microscopically, the phenomenon is due to a bound state formation at the resonance L 0

* from a many-body perspective, the phenomenon is understood as aky

. Localization in position space
 Delocalization in momentum space

In the strongly interacting regime, no simple ordering principle is known:
- Challenge for Many-Body methods

36



Experiments in the BCS-BEC Crossover

av ¢ L

| Innsbruck, 2004 |

ENS, 2004

04

0,3

Erel /EF

0,1

0,2 |

|

700 800 900 1000 1100
Magnetic field [G]

release energy

MIT, 2005

vortices

ad . ® b

pair correlations

1 1 1
0.7 0 -0.25

<«— BEC Interaction parameter 1/k.a

BCS —*

Duke ‘04, Innsbruck 2004 & 06

2.05 —¢

2.00 -
1.95 -
1.90 -+

1.85 -

1.801

|<— BEC
1-75 I T I T I T T I
2 1 0 -1 -2

collective modes
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Microscopic Origin: Feshbach Resonances
fermion field: — ( Wt )
e Start from fermions: (Euclidean) Action /\/ two hyperfine states N
Sold] = [ drd®a(u!(0 — £+ S 010)?)

e (Consider a second interaction channel with bound state close to
scattering threshold V=0, detuned by 1/

V(r)

““closed channel"
N

1%
AE
$ ﬂ// examples:  °Li,*° K

““open channel"

‘V, /{BT| < ‘AE‘

e Detuning 1/ can be controlled with magnetic field

v(B) = up(B — Bo)

magnetic moment ﬂr/esonance position
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Microscopic Origin: Feshbach Resonances

““closed channel" V(r)
» Effective Model to describe this situation: V/ |as
Interconversion of two fermions into a molecule d M ' P
““open channel"
bosonic molecule field: S [¢] = /dedajgb (0, — +@gb ket < 12H

interconversion: Sr, ¢ = @/ drd®z (¢*¢Tw¢ — QZW???I)

Feshbach, Yukawa term

¢T % e NB: cf. BCS Cooper pairing with condensate amplitude:

h ¢, = const.

w e Now we allow for dynamic bosonic degrees of freedom
+ molecule formation
>k k
" (7,x) or ¢ (w,q)
e Parameters:

* (background scattering in open channel) Ay,
» Feshbach coupling: width of resonance |
e detuning: distance from resonance U
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Relation to a strongly interacting theory

* Total action: S = Sw =+ S¢ + SF Wa ¢]

* Field equations: Feshbach action

0S _ 0 ;»(at—ﬁ+z)¢:h¢¢m
5¢ = ¢ = 9 A ¢T¢¢
t — aaf TV
e Formally solve for ¢, ¢; and insert solution into the Feshbach term
2t Y lﬁi
_ 3 h
S = Slp -+ /de :MWM%WW% h>h
1
Y, v 1%
* take constrained “broad resonance” limit:
pointlike interactions ¢ ¢
12 ~N @7
h — oo, = — const. ‘
’ ¢ e

S — Sy hj /de?’:L‘ wiwiqpﬁbi = Sy — %h—j drd>z (wTw)z
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Relation to a strongly interacting theory

e pointlike/broad resonance limit: The action

takes the form a(B)
)\eff // Abg

S[¢] = / drdia (1 (9, — 20+ 25 (1)) ,

Em
B
eff __ 47 )\eff
A, = )\w _ P . .
a = Vi scattering length a and binding energy
effective fermionic scattering length
interaction (nonidentical fermions)

observation of divergent scattering length
Ketterle Group, MIT (1999)
bosonic sodium

e remember v(B) = ug(B — By)

—
o
]

= resonant (divergent) interaction at B_O

Scattering Length a/a,
|

in the following, we shall work in broad resonance
limit and ignore the background scattering for
simplicity




Regimes in the BCS-BEC Crossover

e Compare the scattering length to the mean interparticle spacing d = (3772n)—1/ 3

= three regimes
a <0, |a/d <1  weakly interacting (dilute) fermions

a/d\ > 1 strong interactions, dense

a>0,la/d <1 molecular bound states: dilute bosons
- see below!

e We identify the inverse scattering length as an adequate “crossover parameter”
Mv(B)

. 47h?

since the Feshbach resonance is located at the zero crossing of the detuning v (B)

a_l(B) —

e Cf. microscopic justification: a/d > 1 does not invalidate the microscopic Hamiltonian (as

could be suspected from the discussion of weakly interacting gases). The relevant ratio for
the validity is 7vaw /d, rvaw /Aap < 1. Feshbach resonances violate the generic relation

roaw /a = 1 : “anomalously large scattering length”
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Functional Renormalization Group Approach

1 1
Hlel= 5 e PTG @
L k

Wetterich Equation

=
7
L

|

Integrating out quantum and
thermal fluctuations

T, 03—

0.25-

000"t

Crossover phase diagram

030+

0.20
0.15F
0.10-

0.05-

=

theory space

>

| Uv
s
IR

-
>

flowing action

Motivation:

Transition from well-known
mircrophysics to macrophysics

use FRG to resolve physics at all
scales: microphysics,
thermodynamics, crticial behavior
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Qualitative Picture for BCS-BEC Crossover from FRG

e This first approach is equivalent to an extended mean field theory. It qualitatively
describes the finite temperature phase diagram

e But allows for straightforward extensions

* The simplest truncation allows to discuss the building blocks for the evaluation of the
problem forming the basis for later refinements

e Microscopically, the origin of the BCS-BEC crossover is the expression of a molecular bound state.
e The bosonic bound state formation must thus be contained in any reasonable truncation
e The minimal trunction is a derivative expansion with explicit bosonic degree of freedom

//z-component fermion
1/T A "
teldl = [ dr [ @a{ut 0. 5o — o — (6707w — outer)
0

T2
scalar boson field T (Zgb,kaT _ A¢’kﬁ)¢ + Uk (9™ @) + }

. . . _ _ _ = effective potential for
e Depending on the interaction regime, the boson describes Cooper pairs or bosons

tightly bound molecules
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The Minimal Approximation Scheme

e The minimal trunction is a derivative expansion with running boson sector
1/T

AN h
L 3 T = o _Qb x T o T *
Culodl = [ dr [ @a{wh(0r— o3 — o — 52 (0% ew - ovte)
0
+¢” (qu,kaT — A¢,kﬁ)¢ + Uk (™ @) + }
* Flow equations:
- The equation for the effective potential (hom. part of eff. action,U,(p) = T/VI'x(¢, »* = const.)

p = @ P UQ) invariant
0. Uy [IOKZ/ESTI 1 O Ry, STr -- boson/fermion; internal (spin);
2 Fl(f) [¢] + R; external (frequency/momentum)
1 1 1 1

=—51ry —5 2
2 Ffp)k 9] + Ry x Ff,s,i[cb] + Ry k

- The equation for the “wave function renormalization”
notation: this derivative acts on explicit (cutoff) k-dependence

0 Zo = 0 [525T 5]l omo = 55 [5tQ"">"'©"> ~@l] g0

- And similarly for the “gradient coefficient” Ay (0/0(q*) derivative)

&J%w,k + iTI‘gb athb,k

45



The Flow of the Effective Potential

e We spell out the ingredients of the effective potential explicitly:

1 1 1 1
(%Uk = —§TI'¢ 2) 875R¢ k + TI‘¢ (2) 875R¢,]€
fermionic contribution bosonic contribution
r@ _p@ _ [ —heeo” iqo — (q* — p)
Yk Y iqo +9q% — pu hgeg
@ _ ( Ul +2pU} + Ay kq°/2 —Z¢ k40 )
Pk Z k40 Uy, + Apkd” /2
in real (phase-amplitude) basis (g1, ¢2) (¢ = (¢1 + i2)/V?2)
with Uk = aUk/ﬁp
e NB: Goldstone theorem respected for all k
e Choice of regulator: } ......... S

e Litim cutoff for bosons and fermions, in the latter case such that the IR

limit is on the FS (details see review SD, Floerchinger, Gies, Pawlowski, e )
Wetterich ’10) ot 1o =1
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Building Blocks for the Evaluation

Three key requirements (independent of the implemented approximation scheme)

e We work in grand canonical setting (given chemical potential) but eventually want
to consider fixed density.

= Construct the equation of state for the density

n(p) = ...

e We want to assess the whole phase diagram including the low temperature
condensed phase

= Implement spontaneous symmetry breaking

* We want to know the results as function of microscopic observables, such as
scattering length

= |Implement proper UV renormalization scheme
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The Equation of State

Thermodynamics:

n = —a— = — 5 approximation: mu dependence of other
M M bosonic couplings neglected

Flow equation: //

U, ~ 2 1 oU, 2
Ouny = — O —~ o ak[éTrw(r;> + Ry ) i Try (TF), + Ryr) ']
— T,k = Ny k
Interpretation: parts of the trace can be performed  (up to conventional normal ordering subtleties)
3
Ny k = 2/ d q3 L Fermi distribution
(2m) exp(Egp,z/T) +1
Nek = L it : Bose distribution
) o IStriouti
) (2m) exp(B)/T) — 1
with regularized single particle excitation energies
Ew) _ [(QM W+ Ry)? + h?bp}lﬂ cf. weakly interacting fermions
E((fli = [(Agaq® + Uj, + 25U} + Ry1)(Apa® + Ui + Ry i) Y2 weakly interacting bosons

we introduced “renormalized” bosonic couplings (interpretation:see later)
U =UklZp U =U)Z5  Pok = Zgrpok

48



Spontaneous Symmetry Breaking

e Field equation for effective potential (equilibrium condition)

oU,
agbip) ‘eq = Ug(p)- ¢|eq =0 (,0 — ¢*¢)
SYM SSB
* Three types of solution, for the physical limit & — ( S e T St
symmetric phase SYM: U,>0, ¢or=0 , \ , /
symmetry broken phase SSB: U, =0, ¢ox #0 rar T\i(T}/
critical point U =0, ¢or=0

e It is sufficient to approximate the rho-dependence of the effective potential
further (should be good close to the equilibrium valuepo):

U = m (P = pok) + 520 k(0 — po)” + .

e with running couplings

SYM SSB
2
Mg ks )‘cb,k P0,k 5 >\¢,k
POk — 0 mi)k =0

e NB: SSB criterion works throughout whole crossover. At T=0, SSB occurs for any value of
scattering length. Therefore, there is no quantum phase transition, but a crossover phenomenon
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The Initial Condition and UV Renormalization

e Problem:

e Remember: our microscopic formulation is an effective theory valid at low energies and
momenta A < ag .,

e But the interaction is formally described by a constant

e Manifestation: there is one strongly running coupling in the UV, the mass term:

mé,kwkfork%oo

e Ultraviolet Renormalization needed. FRG solution:

e Experiments probe the “full theory” (with fluctuations), but in the phys. vacuum (two-body scattering)
e Therefore, project on the physical vacuum via:
Fk_>() (vak) = lim I

k3
kF—>O k=0 | T/EF >Tc/8F =const. n F

T 3m2
- Diluting procedure:  d ~ k! — oo

- Getting cold: T ~¢€p

- but the dimensionless temperature remains above critical: switch off
many-body effects

e (Choose UV initial conditions to match IR observables in this limit o
e flow for finite n, T deviates from vacuum flow once

ke~ Ayt~ T2~k
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The Extended Mean Field Approximation

Summary: we have a truncation in terms of running bosonic couplings

2
{mg ke OF Po,ks Apkr Lo k> Ag i )
and a k-dependent flow equation for the density,

Nk = Ny k T N k

Mean field approximation (MFT): for the beta-functions, only take fermion diagrams

Simplifications:
e the flow equations for the bosonic couplings can be integrated directly
e and the equation of state can be solved upon insertion of these solutions

e Discussion

Bosons are already treated as dynamical, interacting particles in this approximation. We can
describe qualitatively the full phase diagram including the transition to the high temperature
phase. This is what “extended” refers to.

within the MFT, no flow for the inverse fermion propagator and the Feshbach coupling is
generated (so taking them k-independent is consistent in this framework):

MFT: (%F(Q,) = Othg . =0

e Now we discuss the MFT solutionatT=0
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The Extended Mean Field Theory of the BCS-BEC Crossover

e The solution for k — O produces two self-consistency conditions (omit k = 0 in notation):

- The UV renormalized gap equation using the relation of scattering

length and action parameters

oU 3 5(®
0= — =_1_M dq[l tanh =% — —|s—,—0] 1 M
a 87 27)3 L () 2T (F) |¢p=p=0 — v
8,0 (2m) Eq Eg a - 47 h?2
- The equation of state
. _ou _ 2
n=—%3, = NF =+ nB(m¢7pOa Ay Zps Agb)
* Solve for (4 and O
* Plot as a function of dimensionless crossover parameter 13
n = 35
—1 —1 2
(a/d) " = (akr) X o
B 7 S, MOMENtum
PR A= hgp
k2 ? 5
€F =9 |
Fermi energy /
) 0 (akp)_l

- What do these solutions tell us?
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The Extended Mean Field Theory of the BCS-BEC Crossover

e The solution for £k — 0 produces two self-consistency conditions (omit k = 0 in notation):

- The UV renormalized ap equation using the relation of scattering
lenght and action parameters
oU (F)
0="5" =1~ 4 [ el o tanh G — Sheslo=ymo] -1_ _ My
dp Ea Eaq a 47 h?
- The equation of state
_ __oUu _ 2
n=—%3, = NF =+ nB(m¢7p0, Ay quaAqb)
* Solve for (4 and O
* Plot as a function of dimensionless crossover parameter 13
n = 3%
—1 —1 2
(a/d) " = (akr) TN o
e 7 A o R " S momentum
W | ~ JA=hp *
€ _ k%‘ - 1 1
F — 57 : i ~ :
2M BCS strongly BEC BCS strongfy BEC
Fermi energy ragime interacting  rgime regime intergcting regime
— \ > -« —>
75_3_‘2_‘101“2 _1 b h B (; 1 2 (3ak4 )_1
0 (akp) F

- Discuss the limiting cases!
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The Limiting Cases: BCS Limit

RN |
€L

= Expression of a Fermi surface, weakly
interacting fermion gas is approached

e Solution above:

e Simplifications
= The EoS reduces to

n=ngp-+nNg —nNgr

= The gap equation can be solved analytically for

£ 1
€F
oU v ou [ @ E<F> .
0= p a  8n (27r()13[ ® tanh —7 — @‘qﬁ:u:o]

BCS
regime

L4

€EF

i

(akp)_l

single fermion excitation spectrum
2 1/2
E(F) = [(m M) + h?p)
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The Limiting Cases: BCS Limit

e Result and interpretation:

e Strongly expressed Fermi surface

Fermi surface

A Fermi distribution
n, d

kr

= Scattering/Pairing highly local in momentum space

e The result for the gap:

T

A =0.6lepe 2akr

= (Condensation is very weakly expressed: only
Fermions close to Fermi surface contribute

ﬁO /n renormalized condensate

e Comparison of BCS limit to extended MFT result

= Strong deviations from BCS result once

(a,kp)_l ~ —1

5
q

¢

Locality in momentum space

Delocalization in position space

J (akp)™
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The Limiting Cases: BEC Limit BEC

e Solution above: £

e Simplification of the gap equation: quite drastically,

v

O
CF

regime

iy

L= /—pn-2M

= The density scale k_F (also: temperature) have disappeared from the gap equation

= The many-body scales drop out: only two-body physics left!

= indeed, comparing to the two-body result obtained as 'y o(vak) = lim I'y_q

T T T S S S H SO SR R
-3 -2 -1 0 1

xcular bound
 formation in
vacuum atom scattering
g threshold

(akp)~!

two-body vs. many-body

k 2 —0 ‘T/€F>TC/€F=COHS1S.

e Discussion:

e The chemical potential plays the role of half
the binding energy in this limit:

Ebind — 2,u — —1/(MCL2)

e Smooth crossover terminates in sharp
“second order phase transition” in vacuum
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The Limiting Cases: BEC Limit BEC

regime

e Solution above: £
Sy )

v

O

e Simplification of the fermion density:

= Strong gap — [t develops on the normal (w‘Lw) sector
of the inverse fermion propagator

= However, there is a piece from the anomalous partyy
that is mdependent of — K single Fermion excitation spectrum

(F) _ /9> N2 2 711/2
= Analysis shows that the fermion density can be written By’ = [(ghr — 1) + 1]

wave function /2/ @ see def..r.enormalized
renormalization pare vev for ~ duantities above!

boson action field




The Limiting Cases: BEC Limit BEC

regime
el
€ :
e Solution above: £ — 0 F
(S
e Simplification of the renormalized couplings: Similar to o ()

the gap equation, they only feature the scale mu. The
renormalized couplings are, for k -> 0,

M2 =m3/Zy — —2u Ay =Ag/Zs > 1/(AM) Ao =N/Z% = 2¢/2Mp = 2a

* |.e. for the inverse boson propagator for k -> 0 gi equation

2

~ P " L 4d | 3
NS N7 L
—1lw + 357 + 2apg 2a,0q

e |.e. for the bosonic contribution to the density

m _ dgq 1
ng = — 2T, T ~H(Q) — 2 /

(27m)3 exp(EY /T) — 1

2

2 11/2
E((f) — [4qM(4qM+2ap)]
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Emergence of an Effective Theory

e Summary: Expressing all quantities in terms of the renormalized quantities gives

e Renormalized inverse boson propagator
~ . 2 ~
r® 1@z, 2apo iw + 457 + 2apg
¢ ? —iw + 2=+ 2ap 2ap0

e Equation of state

250 + 2 / g !
n = 400

(27)3 exp(EY /T) — 1
= Reduction to an effective theory of “renormalized” bosonic bound states

e Mass 2M
e Interaction strength 2a Local objects in position space

e Atom number 2
e Discussion:

e All reference to the concrete value of Z is gone in the renormalized quantities
e Macroscopic measurements probe the renormalized quantities
e Microscopic probes can measure Z -> see later!

e NB: While boson mass and atom number follow from symmetry (Galilei invariance and temporally
local gauge symmetry), the interaction strength 2a is an approximation. The exact answer is 0.6a

59



Finite Temperatures

e So far: Crossover Physics at T=0
e Result for finite temperature phase diagram:

BCS limit:
BCS theory

020

0.00 r I | I I I

1.

0.30 [

025

015
0.10 -

005

\ Normal state

€CF

Superfluid state

BEC limit: Free bosons
of atom number 2, mass
2M

(BEC)

= 21(672¢(3/2))"2/3 ~ 0.218
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Challenges beyond Mean Field

Beyond mean field effects and challenges
at very different scales: critical behavior: /o
long distance scales k;; > n1/3, Tl/z,ej‘/;

/

T /A\/x T T T T T T T
v

[ T T T T'. T T T T T ]
le @ ! \\\
.25 |

D20 -

| few-body physics of
/y/ effective dimers:

microscopic scales

D.15

Many-Body fermion /}/

. D.10 |- 7 o)
physics: : . 1 kg
Thermodynamic scales  post | M= T2 . 2M

_ ko | )
=3
(akp)_l

two-body bound state zero crossing of fermion
chemical potential

Strategy: Find an interpolation scheme which incorporates known physical
effects in the limiting cases
Methods: t-matrix approaches, 2PI Effective Action, Functional RG, ...
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Few-Body Problems from the

Functional F

enormalization Group
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Few-Body Problems from FRG

e Motivation:

e relevant for the many-body problem (BEC regime)
e benchmarking of the technique

® interest in its own right: e.g. Efimov effect in strongly interacting three-body systems
(bosons, 3-species fermions), including nonuniversal features out of resonance

* Massive diagrammatic simplifications for nonrelativistic few-body problem:

e Vacuum limit: 13
n= -
. 372
['ro(vak) = lim T'y_g |
Lk—0 const. 1
T ~¢p

® |n this constrained limit, remain in symmetric phase: no off-diagonal order

n,1M
= F,i N On.m
E vertex with n in-fields and m out-fields
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Few-Body Problems from FRG

* |n particular, inverse propagators diagonal; the “masses” are semi-positive (stable gs)

n+m=2: F§€2,0) = FECO’Q) =0 I’g’l)(Q =0)>0

e physical interpretation: no nonrelativistic antiparticles
e NB:e.g. Fermisurface 1 > 0 thus €q — 4 has no definite sign (-> particle-hole fluctuations)

e Poles in a definite half-plane of the complex plane. Thus, diagrams with cyclic flow direction
vanish (residue theorem)

e.g. (iQ — 0 but (ig{i}#()

e |mplication: nonrelativistic n-body problem solvable within vertex expansion to order n

* Flow of the diagonal vertices in vertex expansion:
one-loop structure: the highest vertex is:

(nm) = (mm) O =0
O, = O nin "o, | qe* M oOUt

m

F}({n—l—l,n—l—l)
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Vertex Expansions in Vacuum

* Vertex expansions keeping full momentum dependence are manageable for
specific scattering problems if kinematic simplifications can be used (sD, Krahl,
Scherer ’08; Floerchinger, Schmidt, Moroz, Wetterich ’09)

* The resulting exact solutions can be compared to simplified truncations to get

analytical insights (Moroz, Floerchinger, Schmidt, Wetterich *09 three-body (Efimov) problem; Birse
et al. four-body problem '10; see review by Floerchinger, Moroz, Schmidt arxiv.1102.0896)

e The solution of the fully momentum dependent two-body problem (ng: termionic sector does not renormalize):

(
N a Rl EEEE — O
'!E'Lj,: - - ﬁ.‘r P — i k Q//
Q/
* Solution for 1/a > 0: dimer propagator (UV renormalization: see above) -2

h2
M2)(Q) =gy Ca +Vio ™ +2/4M — e/

| I
» w N - o - N

EAN

. 2 ! less di
* Binding energy: €5 = —1/(Ma,2) F’(‘CZ)O(Q =0)=0 gfgp:\zZti;rr?er T e R
. L . L (akp) ™!
e Relation to derivative expansion: large binding energy . .
[ (o)~ 7 (s & ha ground state. Negative 1/a: two unbound
k=0 o \'CT g Q= 307 atoms; positive 1/a: dimer bound state

-> (euclidean) bosons with mass 2M
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Three-Body Problem

® The solution of momentum dependent three-body (atom-dimer) problem from FRG (SD, Kranhl,
Scherer ’08) (equivalent to solution of STM equation in nuclear physics (Skorniakov, Ter-Matriosian ’56))

e add a fully momentum atom-dimer vertex to the truncation:

Al = / , 0(Q1+ Q2 — O3 — QQ0A3(Q1, Q2, O3)p(Q1)

x Y (02)@* Q)Y (Q4). (8)
* Flow equation (fermion-boson-flow):

(27) o~ f (28) 4 !r | ”
=8 , where = - { and ak p— O
/ \ A s Fd P

, not 1Pl
-> can be brought to quadratic form!

e Using kinematic simplifications and projection to zero angular momentum partial waves (s-
wave projection, anqular averaging): Equation can be reduced to a maitrix differential equation
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Three-Body Problem

e Matrix flow equatlon for s-wave scattering vertex (fermion-boson flow)

(27) ~ i

8kV(f> V(f)M V(f) V(f) (f) _ 5V(f) | Treelevel AD Scattering

e solutionfor k£ — 0

Full AD Scattering

Vo(f) = (1 V(f)M ) V(f) STM Equation

qd1

* Observable of interest: atom-dimer scattering length aqq = Vk(f)(Ch = g2 = 0)
Aad full solution pointlike truncation tree level
a 1.12 1.72 8/3 =2.67

® Replacing fermions by bosons, obtain (Moroz, Floerchinger, Schmidt, Wetterich '09)

0 IO v =D

® These signs have important physical consequences
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Efimov Effect ’ﬂ/\/

O
d\e
e Vitaly Efimov '70,’73:

- Schrodinger Equation of three resonantly interacting identical
bosons maps to scattering in 1/rA2 potential at short distances

- This potential has discrete exp-spaced spectrum with

Efimov with Innsbruck experimentalists,
E, 1 confirming his theory (Kraemer 06, Knoop '09)

= exp(—27(/so) S0 ~ 1.00624

n n=172,..

e Qualitative and quantitative behavior can be found from the FRG approach along the lines above

e Result for atom-dimer scattering amplitude for identical bosons:

100,[ —_— —
sof _ . log-spaced Efimov resonances in the RG flow:
fi o*x — divergence of the scattering amplitude signals a new
le <€— —ay ] .
L : 4 | trimer bound state
_50': * T 1
—l()():' :
-8 -6 —4 -2 0

e |In RG Language, the Efimov effect is understood as an RG limit cycle (as opposed to an RG fixed
oint) with “period”
point) P T = / S0
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Efimov Effect

e Insight can be gained from the pointlike limit (S. Moroz et al. '09) (approximate matrix by single entry

) Asp = 6V (ky = ky = 0)
- Flow of dimensionless scattering amplitude A3 ; = A3 :k”

atj\?),t = ai?,,t T 55\3,15 T+
o= —cp/4 b=—cp+2 ~v=—-c, cp= (3‘|‘p)/(\/_77)

- Solution for infrared flow { — —00

S\S,t ~ tanh(\@t/Q) with discriminant D = \/52 — dary

-fermions p=—1: D >0 —> convergence to IR fixed point

-bosons p=1: D <0 —> convergence to IR limit cycle

tanh(iv/—Dt/2) = tan(v/—Dt/2) T

so ~ 1.393 exact: so ~ 1.00624 T

—100 L

e Quantitatively
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Connection to Experiments

e Three-component fermions (three hyperfine states) can exhibit Efimov effect as
well (no Pauli blocking) (Braaten & °09, Naidon,Ueda '09, Floerchinger & '09)

unitarity limit 1/a=0 3-body loss rate vs. magnetic field (blue:
FRG result (Floerchinger & ’'09); dots:
// experimental data (Ottenstein & '08))
. S EHaymE 2 e
LT 0.5 1.0 22§
02 e A A I
: | wg 10_23% oooooo
-04p two-body (dimer)=
osl bound state S
i w?»» —+-—
“osl 0 100 200 300 400 500 600
° B [C]
10+
2t Comparison to experiment:
—(VIEI/A)
Efimov spectrum from FRG
(from review arxiv.1102.0896): e Efimov state forms at the three-atom

threshold

e There the system shows enhanced loss
features (new 3-body decay channels
open up)

e |owest Efimov bound state determined by short-
distance physics

e universal bound state sequence at unitarity

e Efimov resonances at three-atom continuum (red
circles and atom-dimer threshold (green circles) See Talk by S. Moroz!

e resolve full Efimov tower, also away from resonance
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The four-body problem and connection to thermodynamics

* Vacuum: dimer-dimer scattering on BEC side a>0

0‘ ’Q ¢ * “ .0. pa - \\ “‘
’0‘ “‘ ~ ~ "0 ’/ R .
at o, — o; O + O 3 ‘; Exact solution from 4-body
S Schrodinger equation (Petrov,
: : : Salomon, Shlyapnikov '04):
dimer-dimer scattering length = ay yap )

= 2 0.75 0.6
a

* Impact on many-body problem: E.g. Condensate Fraction at T=0:

Qc‘

0.8 |

Bogoliubov theory with - _ 0.75
‘ a

2

» Systematic improvement possible: all possible local

(SD, Gies, Pawlowslgi'? ’ Extended Mean couplings for dimer-dimer vertex (Birse, Walet, Krippa ’'10):

Wetterich ’07) 04 | Fiel(csz
]
0.2 a ]
0 FRG Result CLM/CZ = 0.58 4= 0.02
~2 0 2 4 6 (akp)_l

 Picture: Tightly bound, weakly interacting molecules deep on BEC side: effective pointlike dof.s
interacting via effective molecular scattering length

*)
microscopic thermodynami lonqg distance
3 1/3 p1/2 .1/2
Ma?

32’
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Beyond Mean Field Many-Body
Effects in the BCS-BEC Crossover

Floerchinger, Scherer, SD, Wetterich '08; Scherer, Floerchinger, Wetterich ‘10

(30

T T T'I T T T T T T T T T ]
' -
I
- ' —
| ' —
i ] ]
D25 1 .
i I ]
(L 1 ¥ _'7 1]} , N - ]

N.20 |

D.15 -

D.10 |




Many-Body Fermion Physics

Particle-Hole Fluctuations for weakly interacting fermions:

* Purely fermionic description

e Simple RG Equation beyond log-divergent contribution:

particle-pa

a>< _—
v

s-wave projected
4-fermion vertex ~ log T

JAN A
_ 3 T = i T2
S, 0! /dT/d x{w (9c— 577~V + S (V') }

rticle channel particle-hole channels

+ ét§ + ét@<
/ < )

Y
for T —0 regularas T — 0

e Screening effect with impact on critical temperature at weak interaction
- Thouless criterion —1
M o(T,n)=0

- result

T2 _o6le T . LY 99 Gorkov effect
€r . y TC(Gorkov) .
—
microscopic @modynaD long distance
eM:—L n:@ i k1d>>n1/3,T1/2,8}w/2
Ma? 372’
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Many-Body Fermion Physics

e Hubbard-Stratonovich transformation: Decoupling into particle-particle channel
» essential: describe the bound state generation

e how to reconstruct the lost particle-hole channel?

e Study flow of newly generated 4-fermion vertex

- extend truncation: A} = / My, (\lﬁllf)2

- initial condition: My=A =0

- flow:

v s-wave projected
v included via

rebosonization technique
(Gies, Wetterich '02)

*
e
‘. o
* o
~ e *
R ~
— o ¢
l» — (A
* e
4 . t
*
*
*
*
*

microscopic @modyna@ long distance
1/2

_L . k%: T kld>>n1/3,T1/2,8M
Md> =3

Ey =
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Many-Body Fermion Physics

Interpretation
* assume massive bosons P¢,k(Q) ~ qu, k

e contract boson lines 7bph,k ~ 5

microscopic @modyna@ long distance
1/2

1 k3 k >>n1/3,T1/2,8
n—= _F T ld M

eM e pr—
Ma? 37[2’




Result: Particle-Hole Effects in the BCS-BEC crossover

—>
microscopic @modyna@ long distance
1 k?;‘ kia >>n1/3,T1/2,8}\f
Ma 372

S. Florchinger, M. Scherer,

A QMC SD, C. Wetterich '08

_~Gorkov

e (ake)

zero crossing of fermion
chemical potential

e Accurately reproduce Gorkov effect in the BCS regime from rebosonization procedure: bosons
massive even close to phase transition

* Fermion many-body effect: vanishes at zero crossing of chem. pot.

* but particle hole fluctuations are not the origin of the strong suppression of T_c wrt. simpler trunc.
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Renormalization of the Fermion Propagator

e So far: Interpolation scheme following evolution of beyond mean field effects into
strongly interacting limit
- boson particle-particle fluctuations

- drives (shift in T_c) on BEC side

- but bosons massive on BCS side (except
very close phase transition): small effect in
BCS regime

A\
.
.
.
*
*
*
.
"
*

- particle-hole fluctuations

\ < / - drives Gorkov effect on BCS side (perturbative
4 Gorkov effect assumes massive bosons)

- but fermions massive on BEC side: small effect in

BEC regime
/ | ) ’\

* Instead, renormalization effect on Fermion propagator strongest in crossover regime

a-- - fermions massive in BEC regime
! y - bosons massive in BCS regime
- No obvious suppression in strongly int. regime
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Result

(S. Florchinger, M. Scherer, C. Wetterich '10)

 Exemplarily, consider fermionic wave function renormalization Z,,(T' = 1,.) = ———

Tc/TF

030
025"
020"
0.15
0.10

005"

0.00°

2

4

6
(akp)™!

0 1)
0(iw) ¥,k=0
e Numbers from most recent truncation
compared to other approaches

at critical point and unitarity pe/Er  Tc/Tp
Burovski et al. (2006) (QMC) 0.49 0.15
Bulgac et al. (2006) (QMC) 043 < 0.15
Akkineni et al. (2007) (QMC) - 0.245

Floerchinger et al. (2010) (FRG)  0.55 0.248

atT=0 p/Er  AJEp
Carlson et al. (2003) (QMC) 043 0.54

Perali et al. (2004) (t-matrix approach) 0.46 0.53
Haussmann et al. (2007) (2PI) 0.36 0.46
Bartosch et al. (2009) (FRG, vertex exp.) 0.32 0.61

Floerchinger et al. (2010) (FRG, derivative exp.)  0.51 0.46

e convergence: minor quantitative change in T_c despite substantial renormalization of
fermion propagator in strongly interacting regime
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Aspects of Universality in the BCS-BEC Crossover
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Universality |: Physics Close to the Phase Transition
SD, Gies, Pawlowski, Wetterich '07; SD & 10

Close to (expected!) second order phase transition: Deep IR physics important

o fermion flow frozen out by temperature, i.e. wavelengths k ~ /T,
e R flow governed by Wilson-Fisher fixed point for d=3 O(2) model

Gap parameter in various regimes Near-criticality: Extent of universal domain
dIn A\, (T)/dIn A(T)
1F - : - ' ik G L R B S AL M ]
o) BEC
L ::.1“:
0.6 | Lsp (akF)_l =4 A',
0.4 1 1,05_ et e ‘/ x'/\‘i>
0.2 | 0.55_ BCS-_(akp)™" = -2 unitary
0 0.2 0.4 0.6 08 T/Tc 1 0.0 bt
In[A(T)/A(0)]
e Second order PT throughout crossover (unlike e Investigate scaling of four-boson coupling on
e.g. Popov theory) approaching the phase transition with A(T — T
e continuous change of relevant dof.s
° Ao ~AS (=098

e Universal critical behavior of O(2) universality
class from fermionic microscopic model: * largest critical domain in the unitary regime (fastest

N(1/(akr)) =0.05 forall akp approach to scaling behavior)

>
microscopic thermodynamic @g distarD
1 i3 kig > 1/3,T1/2,el/2
SM:_AJ,,Z n:%7T . " M
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Universality |: Physics Close to the Phase Transition

e Manifestation of the quantitative control of physics on all scales is the calculation of the
critical temperature in the BEC regime (SD, Gies, Pawlowski, Wetterich '07)

Phase Diagram

—N T

03} BCS. | W\BEC+ AT __{7 | Free BEC critical Temperature

05 | | -

0.2} - T _ TBEC 1/3

T — L ¢ C — . .
T=T/ec 015 TBEC — K --apr - N
01 C
0.05
0 2 4 6 8
¢~ = (ake)™ FRG Other
* Microphysics: Scattering of composite bosons with apn 0.75 (0.58) 0.6
effective molecular scattering length a Birse& 10 Shlyapnikov & 04
» Thermodynamics / near critical behavior: Shift in . SChrOd{”ger Ea.
the critical temperature (fund. bosons Baym, Blaizot '01) ' Arnold& '01 lattice sim
e Critical behavior: d=3 O(2) universality class Blaizot & 08 FRG
@) Y T 0.05 0.038
> numerical simulations
< microscopic > _thermodynamic > @g distarD
1 k% kig > n1/3,T1/2,8]1V;2
&M =—7—> n=_—-
Ma? 3n2’
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Universality Il: Broad Resonance Universality

e Consider dependence of the effective action on the Feshbach coupling

1/T
teldl = [ dr [@a{vh@ - 53 - w) —qb*wTew ~ovtew)

0

—|—¢* (Z¢,k87 — Agb,kﬁ + m?b,k)qb -+ >\¢,k(P — p0)2 —+ }

e The Feshbach coupling only renormalizes weakly, so hquf ~ h¢,7jn for all k

e C(Classification
h h;
e Broad resonances: $,in —7 OO in

for fixed scattering length g ~ —— — const.

e Narrow resonances: h ;, — 0 v(B)

e Loop corrections scale with powers of 0?1 .
P P g im e.g. inverse boson propagator

~ h?2 .
~ -=>- > Q , N
b — &= hyrd e

= Redefine
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Universality Il: Broad Resonance Universality

e Consider dependence of the effective action on the Feshbach coupling

1/T
N -
refos) = [ dr [ ao{vlo, - 5 - ) @ Ve - WW) ¢ — ¢ = herd
0
Z A 2
N in — OQ '

* Broad resonances: in for fixed scattering length ¢ Din const.
e Narrow resonances: hg ;,, — 0 B)

e For broad resonances:

e |[nitial conditions for most bosonic couplings do not matter for broad resonances:
Universality!

e yet there is one “relevant” coupling: const. + loop corrections

iy uB)
h2 - h2 oo o oo o —
¢,k ¢,k

e For1/a — 0 (Feshbach resonance): nonperturbative theory, as the dominant nonlinearity (cubic

hbach term) is O(1) J

Ir Thus:

e Forl/a— 4+oo (BCS/BEC regimes): ordering principle due to large bare boson mass
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Broad vs. Narrow Resonances: RG perspective
(SD, Gies, Pawlowski, Wetterich ’07)

Identify two fixed points in model with detuning v(B)=m , and Feshbach coupling /4 ¢ (or {a~"(B), hg 0}):

e Broad resonances: Interacting FP

- Detuning ~ B;}fo single relevant perturbation: All further microscopic memory lost.
- Similar to critical behavior near 2"? order phase transition (single relevant perturbation ~ T;TC)

e Narrow resonances: Gaussian FP

- Detuning and Feshbach coupling relevant parameters: Microscopic information important.

- Exact mean field-type solution available: minimally couple Bose-Fermi mixture which exhibits the
full crossover behavior (SD, Wetterich '05).

Narrow to broad resonance crossover:

Fixed point structure dominance of different fixed points
TC/TF
4 - - r 0.26 -
N : road resonance FP I _
R — h¢ — 0 o h¢ — OO
< : _ >
0 7 — . 0.22F 1 Ep
.noninteraéting FP- Gaussian FP ' :broad res.
\\\\ :‘:;,-.____..f . — - -— 'J. 020 '_I | | | I_—
-1 0 5 1 2 0.1 | 10 100 To00 "4/ VER
My

= Explains universality in crossover experiments (K,Li atoms) from RG point of view

= Further possibility for perturbative expansion about narrow resonance FP (cf. epsilon, 1/N expansions
(Nishida, Son '05; Radzihovsky, Sheey '06; Nikolic, Sachdev '06)




Scaling Violations in Crossover Experiments

Large but finite Feshbach coupling induces scaling violations in many-body system.

Deviations from universality probed experimentally Partridge et al. ‘05

Measure the closed channel population probabilityQ2 5.
Scaling violation O(krhy )

2B

0.01
0.001 K
0.0001 |
00001 |
1.-10°% |

1 0.01

1 0.001

1 0.0001

1 0.00001

. -6
. 1 [ ]
- [
e S
H\“x
.

1.-10°7

600 650 700 750 800 850 900 930

B|G]

(SD, Wetterich '05)
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Strongly Correlated Bosons:
The Bose-Hubbard Model

hopping

interaction

cold atoms in an optical lattice (see below)
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Microscopic Origin: Bosons in Periodic Optical Potentials

e Starting point: workhorse Hamiltonian for weakly interacting ultracold bosons
n /\ n ALa g
H = / Wl( T x + gVl ]
X

e see above: trapping potential can be treated classically due to scale separation

e instead, now we are interested in a periodic potential of wavelength comparable to the typical
interparticle distance: light in with optical wavelength, as

A~ 500nm =5- 10 %cm d<107%cm (n>10%2cm™?)

typical wavelength of light typical interparticle separation

e create such conservative potential by weakly coupling the atoms in their ground state (H @x) to
auxiliary internal level: position dependent second order AC Stark shift for standing wave laser beam

yields optical potential
Rabi coupling to aux. level

3

02(x)

V(x)=nh A

= V() Z sin2(k7;az‘z-), kz = 27’(’/)\7}

)
E laser detuning from aux. level

e atomic fermions can be treated analogously: Fermi Hubbard model
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Bose Hubbard Hamiltonian (Jaksch et al. *98) spatially localized

Wannier functions

e For dominant optical potential V{; > (other scales), we expect
localized single particle wavefunctions to provide a useful
description of the system.

e A suitable complete set of basis functions are the Wannier functions

e We expand the field operators in Wannier functions of the lowest band

@E(i”) = Zw(f— ;)b

to obtain the Bose Hubbard model

H = =) Jyblo;+ 10> bl
1] )

with hopping J;; = [ &Pzw(Z — ;) [—%V2 + Vo(a?)} w(Z — ;) and interaction

U = %g f d3r \w(j;’)\‘l valid for J, U, kT < hwgloen- (tight binding lowest band approximation)

additionally, we are bound to interactions (scattering lengths)
This is not true close to

extent of Wannier function
f Feshbach resonances!

g << (],O, (1 —= — here, it means lattice spacing
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NNNAN
Bose-Hubbard Model (Fisher, Weichman, Grinstein, Fisher ’89) ! , v UV \ /
) ( L g 1 _

(2,7

A 7/ Y

-

Y

kinetic energy trapping potential

(ignored here) interaction energy

e Lattice model: Possible to penetrate high density regime (n;) = O(1). Not possible in continuum.

e Ratio of kinetic and interaction energy tunable via lattice parameters (and Feshbach resonances).
In particular, reach interaction dominated regime.

®* The competition of kinetic and interaction energy gives rise to a quantum phase transition

kKinetic energy dominates: superfluid interaction energy dominates: “Mott insulator”
N e o]le]le][e][e]
D > “strongly correlated”
U/J U/J > 1

e The Bose-Hubbard model is an exemplary model for strongly correlated bosons. It is not realized in
condensed matter.

e Remark: strong interactions and high density not in contradiction to earlier scale considerations:

e strong interactions: J/U < 1 mainly from reduction of kinetic energy via lattice depth.
e High density due to strong localization of onsite wave function.
e For validity of lowest band approximation, it is however important that < A




What is a Quantum Phase Transition (QPT)?

e Definition: A phase transition at T=0 which results from two competing (noncommuting)
operators in a Hamiltonian, each of which prefers ground state with different symmetry

e Second order QPT are characterized by spatial and temporal critical exponent

- diverging length scale describing the decay of spatial correlations at the
transition point iti
P ‘V 2 critical exponent

—1
§ ~ ’g — Jc
- vanishing energy scale separating ground from excited states (gap) at the
transition point implies diverging time scale

AN’g_gc

’l/zd

the ratio defines the dynamic critical exponent,
A~ 7

e Afinite temperature is always a relevant perturbation at the quantum critical point.
Therefore, a generic “quantum phase diagram” has a shape

T A Disordered - classical description of critical
behavior applies if
*..  quantum critical hwiyp < kT
region ...,
line of second order /Z ~~~~~~~ \

phase transitions . .
(possibly) ordered T: classical-quantum crossover

without symmetry
breaking

—>

/\/ - This is always violated at low enough

symmetry
breaking

g
eg. BH model g = U/J : superfuid Ye Mott insulator




Mean Field Phase Diagram: Strong Coupling Expansion

e On the lattice, the strong coupling limit is simple and exactly solvable: J = 0 corresponds
to an array of decoupled sites

H=—JY blbj—pYy f+3iU0» (A —1)
( i L

0,)

—

diagonal in Fock space, exactly solvable
e Mean field theory via local condensate mean field

° Ansatz. b; = mbi

o Insertinto Hand rewrite: H = HMF) 1
%]
e with local mean field Hamiltonian A (MF) — Z h; expressed in orig. operators again

"0b;)

1

hy = —piv; + 2UR (R — 1) — Jz("b; + ¥b)) + Jzp*y)

e Assume second order phase transition and follow Landau procedure: 5 ( w)
A

® Study ground state energy
E(y) = const. +m2[¢]* + O([¢|*)

— Ny
®* Determine zero crossing of mass term in second order perturbation 2
theory in  J1) < 1 close to phase transition unstable towards SSB
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additional material

Phase Diagram: Derivation

* Assume second order phase transition and follow Landau procedure:

e Study ground state energy
E(1) = const. +m?[y[* + O(|¢[*)

* Determine zero crossing of mass term

e (Calculate E in second order perturbation theory

0
hi = h” + 9V,
1
“smallness parameter close to

phase transition
h® = —pn; + LU (R — 1) + T2
Vi = Jz(b; + b))

e Validity: approximation neglects spatial correlations via local form
- becomes exact in infinite dimensions (Metzner and Vollhardt ’89)
- reasonable in d=2,3 (T=0)
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additional material

Phase Diagram: Derivation

Zero order Hamiltonian h(.O) : diagonal in Fock basis {|n)},n=10,1,2, ...

The eigenvalues are EY) = = —un + Un(n — 1) + Jzp?
The ground state energies for given 1, are

72(0) _ 0 for n <0
K —uii+ sURMA — 1)+ J29p? forU(m—1) < p<Un

The second order correction to the energy is

2) .2 (7| Vi|n)|? 0 A1
EY =92 J
nY ety g9 g = (J2v) Un—1)—p " pn—Un

For E = const. + m?2vy? + ... the phase transition happens at (i = p/Jz, U = U/Jz)

m n n+1
_:1+_ — :O
Jz lﬂﬁ—n—ﬁ+ﬂ—Uﬁ

Bose-Hubbard mean field
phase border
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Phase Diagram: Overall Shape
This gives the phase diagram as a function of /U and J/U.

n/U

2.0 Un—1)—p p—Un

NB: for non-commensurate (= integer)
fillings, superfluidity persists for U -> O:
excess particles condense.

1.0

“Mott Lobe” 0.04 —_
0.0 0010 0020 0.030

||

J/U

Simple picture:

MI: Quantization of particle number SF: Quantization of phase

79 [N7 @] — i” - conjugate variables




The Mott Phase

e In the kinetically dominated limit, we expect a weakly correlated superfluid (see above)
e Here we discuss characteristic features of the Mott insulator

e Mean field Mott state : |n) = [, |n;) = n~M/2 ], bI"|vac): Quantization of particle number

- Quantization of particle number within Ml is an exact result in the sense (b}bﬁ =n

« at J = 0, Mott state |n) is (i) exact ground state, (ii) eigenstate to particle number N = > i T,
(iii) separated from other states by gap ~ U
«  Kinetic perturbation Hn = —J 3" ; ., bib;

« commutes with N, [Hin, N] = 0

= switching on J adiabatically, the ground state remains exact eigenstate to
number operator. Assuming translation invariance gives exact result on

quantized particle number,

- Observable consequence:
wedding cake density profile

(b1b;) =

- Implication: the Mott insulator is a gapped incompressible state,

(N
o

n

=0

density: “wedding

Slice Fraction (%)

Shice Fraction (%)

v 3 o 3

o
°

15}

10 }

N =1x10° N=1x10°
a , SF {i®b S MI
o °°¢ $ ¢
°
$ ° :0 u.° ]
4 0, ° - %
:o boo .0° : .0 :

3‘ ... N ‘ .. 3 4 .Q ‘

55 a °%s ° e 1
0°o° é te 1 33309 xoh “
.“Q‘N etye 0'0."0. ."00. ¢ |

c ot | d j
T o, MI

°° e \ |

o 4

. ¢, ) a° |

LY M ®  eee, § |

¢ ¢ o Y go ot .. 1

0’ o. ° 4 3° ‘[

ot0e® ' » oott’ ¢ "Begel
e Yoo ot 4 oo ’ toedd
A A A . hJ .A A .A ', A A
-20 -10 0 10 2 -20 -10 0 10 2
Z Position (um) 5 Z Position (um) 5
N =2x10 N =3.5x10

Bloch group, 2006
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Functional RG approach

This part of the lecture is based on work by A. Rancon & N. Dupuis, arxiv:
1012.0166

® |dea:
- Strong coupling mean field provides correct qualitative behavior of short distance
physics and thermodynamics (phase diagram)
- Use mean field theory as a starting point and include fluctuations via FRG equation

- in this way, include both relevant short distance lattice physic and interpolate directly
to long distances: “physics on all scales”

* |mplementation: start from regularized Bose-Hubbard action:

Sk — SBH + ASk SBH — Sloc + Skin

* U *
Sloc = /dT E 902 (87' _ ,u)gpz + 5(901 90’6)2 a
i tq = —2t E COS ¢;
i=1

Skin = —1 / dr Z Pipj T CC = / dr Z PalafPq bare lattice dispersion
q

1,]
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Implementation: Cutoff Function

e Choice of the cutoff function:

AS), = /dTZ@ZRk(Q)SOq cf. Skin = /dTZSOthSOq
q
q

Ri(a) = —Zasth®senta) (1 —y)0( —ya) g =1 — (20t — |tq])/th?

o see truncation
e Limiting cases:

k=A: tq+ Rr(q)=0 action becomes local

k=0 : tq + Ry (q) = tq  the full hopping is taken into account

e |.e. spatial fluctuations are suppressed in UV and fully present in IR

tq + Ri(q) ~« S - \ /
\ // _\ /_ (courtesy N. Dupuis)
1/ 4 |/ \ /

N R4

N |- -

k=A=+/2d O0<k<A k=0

97



Initial Condition: Mean Field Theory

e Remember: effective running action is modified Legendre transform:

P46 0] = ~log il )+ [ dr Y (i i+ ec) = A6,

e The initial condition for the flow:

k= A : FA[¢*7 ¢] — FIOC[¢*7 ¢] + /dTZ ¢th¢q
q

with
standard Legendre

[ocld™ — —log ZAlJ*. J d JX b, . transform of a local
ocld”, 9 BN H/ TZL:( {0t ce) partition function

e numerically exactly solvable local problem (for any temperature)
e I'Ais equivalent to the above mean field approximation, as gbq Is the classical field

* Thus, the Wetterich flow equation will interpolate between the mean field
approximation and the full theory reached at 1';._,
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Truncation

e Having built in the short range correlations, we are now interested in thermodynamics and
long wavelength physics

e Derivative expansion as for weakly interacting bosons (Wetterich & '08; Kopietz & *09; Dupuis '09)

2
@ _ Varw® + Za geq +Vy +2pV)] — 20, kW
k Z ¢ kW + ZAk€q+ Vy,
with suitably normalized lattice dispersion cro/sg)ver to relativistic model at low
- o g2 energies (Wetterich '08; Kopietz & '09,’10;

e Keep the full effective potential for the thermodynamics. For simplified discussion of long
wavelength physics,

Vi(p) = { YOk S(p—pox)? forpor>0  SSB
Vo +Axp+ 2kp*>  forpor =0  sym

® As above, the average particle number can be obtained from the effective potential

OV, k—0
O

n=—
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Phase Diagram and Thermodynamics

., 0n
K =n"—
7 Iy

e Good agreement with recent QMC e Compressibility shows plateau behavior

simulations for the phaser border (cf. MFT  associated to particle number quantization
tip of the lobe: ca. 20% deviation)

I<=—7— |
%H"“
- ~Q,
- .
ool e NPRG
- e - S Ql\/IC
~ 0
b0.6' ‘xg\ _
= R |
04 ) |
o’ —
Qe -~
0.2 o -
—F-—‘—-‘o‘—
.--r-*r”"'f R T R R B
O="001 002 003 004 005 006 007
H/U

(A. Rancon & N. Dupuis, arxiv:1012.0166
QMC Data: B. Capogrosso-Sansone '08)

microscopic <_thermodynamic > long distance
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A Strongly Correlated Superfluid

* Remember: two scales in a superfluid (see weakly interacting bosons): use d=2
and, at low quasimomenta, 2m =~ 1/t

pr =V a(U/t) Prp ~ V/(U/1)3

crossover from quadratic to linear (Bogoliubov)  crossover from linear to Ginzburg regime

e strongly correlated superfluid: Absence of Bogoliubov regime

Uuv IR uv IR
[$—————— Sy | | == —] 1€ /'_’ _______ e p—
\\\\ ././' /./‘/ |JF=——e=== _
______ I\ / ——— CR/Ch=p
1= \ / _
S O\ S Ps /2t
050 | Ck/ckA_ ’ X - Var/Vao - 0.5+ o ’no,/c/'ﬁ 14
I :Os,k:/Qtn 1 ./ \\
norfn /./ X Zow]Zon | |
0.9% 5 10 ! \ 1 /? k o
In(A/k) 7 . n(A/k)
0 e ' e % | 5 J 10
0 5 10
1n(/\( k) |
weakly correlated superfluid strongly correlated superfluid

running quantities: Ph = \/ﬁ(U/t)
inset: physical observables: speed of sound, superfluid fraction, condensate order parameter
main figure: running couplings from the truncation
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Critical Behavior in the Bose-Hubbard Model

e We give a symmetry argument for a “bicritical” point with different dynamical exponent at the tip of the lobe

e The full effective action (including fluctuations) at low energies has a derivative expansion
T[] = /w*[z& + Y02 +m?+ Y+ A ) + ..

o At the phase transition, we have m? = 0. At the tip of the lobe, we have additionally(vertical tangent)

om?

O

=0

e Using the invariance under temporally the local symmetryy) — e 1 — 1 +10,6(7), we find the
Ward identity (¢ = (w, q))
Om? s, 6°T s, 6°T

=/

COp Op e (q)a(q) lv=0g=0  O(iw) 5¢*(q)5¢(q) |w=0;q=0

e Thus, there cannot be a linear time derivative ath the tip of the lobe, Z = 0. The leading frequency
dependence is quadratic ’g

o oy
o o

tOS
~.
3

00

moving in positive mu direction
suppresses SF

om?

o

moving in positive mu direction
enhances SF

. om?
l4

Ou

O€0'O§)’O 0100

> 0

%

<0
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Bicritical Point from FRG

* As a consequence, we have the following critical behaviors

- At generic points on the phase boundary the dispersion

IS nonrelativistic 2
dynamical exponent

5 |
w ~q — 2z = 2
- At the tip of the lobe, by symmetry the dispersion is relativistic
0.%-0 0.010 0.020 0.030 J/U
w ~ |q] =z =1
- the effective dimension obtains from the power counting:
deg = d + 2
- the upper critical dimension, where mean field behavior is expected, is
dcrit,—l— =4
- established in FRG analysis for d=2 from microscopic model:
- generic points: mean field like - tip of the lobe: critical behavior of O
critical behavior (log corrections) (2) model in
deg = 4 def = 3
e.g. anomalous dimension crit. exponent
(A. Rancon & N. Dupuis, FRG tip BH model n = 0.049 v = 0.699

arxiv:1012.0166) high precision estimate 77 = (.038 v =0.671
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Attractive Lattice Bosons with
Three-Body Constraint

: Dimer Superfluid SO(3) symmetric A
bicritical point 41
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Motivation

* Remember fermions: BCS-BEC crossover (not: quantum phase transition), since

<¢T> — <¢¢> =0 Pauli principle
<¢T¢¢> 7& 0 pairing order

* This is different for bosons: two symmetry breaking patterns may occur

by #0, (b*)#£0 - Conventional SF

<l;> =0, <];2> 70 - “Dimer SF”

* Thus, in a bosonic analog of the crossover problem, there should be a quantum phase
transition, reminiscent of an Ising transition, since (cf Radzihovsky& ‘03; Stoof, Sachdev& ‘03):

(b) ~ expib (b*) ~ exp2i6

= Spontaneous breaking of Z_2 symmetry @ — 0 -+ T of the DSF order parameter

>
0 T Ising QPT? (akp) ™!

* The phase transition should be seen upon increasing the boson attraction (molecule formation)
* Problem: attractive bosons are unstable towards collapse (they seek the solid ground state)
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Stabilizing Attractive Bosons

* Problem: attractive bosons are unstable towards collapse (they seek the solid ground state)
 on the lattice, one could imagine a situation with two-body attraction but three-body repulsion:

H=-JY blbj—pY ni+ 30 di(h;— 1)+ LV Y (i —1)(7; —2)
(i.,7) i i i

e for

U<0 V>0 V/IU| > 1

- attractive two-body forces
- three-body interaction acts as a constraint against three-fold and higher local occupation:
stabilize against collapse

* There is a dissipative mechanism based on strong three-body loss which realizes such a three-body
hardcore constraint
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An analogy Opt'CaI pumplng A. Daley, J. Taylor, SD, P. Zoller '09

master equation in Lindblad form

A1z le) d

o 5P = —ilH, p] + Llp
F\ ()

0 with - H = (0)(e] + |e)(0]) — Ale)el

1 Fof?l
€ 1 —
1) Clp] =T (Jpﬁ — (T p+ pJU)> J=11){e
. . 0°
pumping rate TPt = en FQF (forQQ < T, A
T
f 1 01 .
02 / Fert X
Mot~ =T w —
© 42 Zeno regime: system
frozen in |0)

0 o 5 | F/A 15 20
large I©  *system “freezes” in 10>
leading virtual process is effective small loss rate 0 -> 1
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Analogy to Three-Body Loss

NS
()
I
0)
‘T Degr

detuning A <«—— 2U onsite interaction energy

Rabi frequency () «<——— J  tunnel coupling

decay rate I — F3 three-body recombination rate

*system “freezes” in subspace with fewer 3 particles per site:
3-body constraint

-stabilizes against particle loss: effective loss rate T'eg ~ J*/T's| o s T, /2U15 20

= Forl's > U, J, realization of a Bose-Hubbard-Hamiltonian with three-bod
hard-core constraint on time scales ¢t < 1/I'og

108



Analyzing Constrained Lattice Bosons (S M. Baranov. A

Daley, P. Zoller ‘09,’10)

* There is a simple mean field theory (Gutzwiller factorization of the ground state wave function)
* but it misses out physics at various length scales:

>
ow =~ n= %,T faa > T
bound state shifts’in the phase nature of the
formation border phase transition (\6\~|~
* How to go beyond? @QQQ\\g\
« MFT is a classical field theory e° de\(‘)
* Find a means to requantize this MFT: classical field theory -> quantum field theory 0"

 exact mapping of the constrained Hamiltonian to a coupled boson theory with polynomial interactions
* the bosonic operators find natural interpretation in terms of “atoms” and “dimers”

P P% “orojected” Bose-Hubbard
~ Hamiltonian (with constraint)

H=U-=2)Y fhog—pY fug—J Y [H,XXt1;+ V2t 1 Xt +t] Xit] to ;) + 2t] o jtl ity
g i (1,)

X, =1-— ﬁl,i — ?AlQ,Z' N “atoms” “dimers”

= We have identified several quantitative and qualitative effects:

v Tied to interactions
v Tied to the constraint
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Beyond Mean Field Phase Diagram

e Qualitative effects of the constraint and interactions:

(SD, M. Baranov. A.
Daley, P. Zoller ‘09,’10)

Phase diagram for attractive boson with three-body constraint

IU I J 2]
& Atomic Superfluid / '
-9 |
}
i X
- 4

_ Ising QCP
ol . . ]
:Dlmer Superfluid SO(3) symmetric |
i bicritical point 1
- 8 L | | | | | \ | | p n_

00 0.5 1.0

= Enhancement of symmetry from

SO(2)

= |sing quantum critical point near half filling

mICFOSCOpIC

1.5 20

~U(1l) — SO(3)

thermodynamlc Iong distance
o >> 12 ¢ 1/2
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Symmetry Enhancement in Strong Coupling

 Perturbative limit U >> J: expect dimer hardcore model

* Interpret EFT as a spin 1/2 model in external field: (N~ >,\ CDW order
Heﬂc:—QtZ(sfsf’?—l—sysy—k)\s?s?) 20 ~ L (NY)
J i) 077 U o
(i.5) 5
* Leading (second) order perturbation theory: A= —=1 I
2t s <N:c>

= |sotropic Heisenberg model (half filling n=1):

* Emergent symmetry: SO(3) rotations vs. SO(2) sim U(1)

« Bicritical point with Neel vector order parameter xy plane: superfluid order

N = Z(—)jsf‘ with constraint A = 1

j
« charge density wave and superfluid exactly degenerate @/\g/%/@/@/@/

* CDW: Translation symmetry breaking
* DSF: Phase symmetry breaking

. - . without constraint A = 4
 physically distinct orders can be freely rotated into each other:

"\
“continuous supersolid” @/\8/@/@/@/@/

= The symmetry enhancement is unique to the 3-body hardcore constraint
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Signatures of “continuous supersolid”

* Next (fourth) order perturbation theory: Superfluid preferred
A=1-8(z—-1)(J/|U|)?* <1
* Proximity to bicritical point governs physics in strong coupling

(1) Second collective (pseudo) Goldstone mode

o(q) =1z((Aeg+1)(1 —¢q))

(2) Use weak superlattice to rotate Neel order parameter

1/2

etz =A/tz=1—- A= 8(z—1)(J/U)?

(3) Simulation of 1D experiment in a trap (--DMRG)

2 ' - ‘
c) d) 2
n(x) 40 p .

/
T ' Y /// 1
20
0 - - x o
20 40 50 0 20 1 40 60

density profile: Onset of CDW DSF order in textured regions

N Gl

AL

S
\/ V
v

Second (pseudo) Goldstone mode
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Signatures of “continuous supersolid”

* Next (fourth) order perturbation theory: Superfluid preferred
A=1-8(z—-1)(J/|U|)?* <1
* Proximity to bicritical point governs physics in strong coupling

(1) Second collective (pseudo) Goldstone mode

o(q) =1z((Aeg+1)(1 —¢q))

(2) Use weak superlattice to rotate Neel order parameter

1/2

etz =A/tz=1—- A= 8(z—1)(J/U)?

(3) Simulation of 1D experiment in a trap (--DMRG)

2 ' - ‘
c) d) 2
n(x) 40 p .

/
T ' Y /// 1
20
0 - - x o
20 40 50 0 20 1 40 60

density profile: Onset of CDW DSF order in textured regions

N Gl

ALY

S
\/ V
v

Second (pseudo) Goldstone mode
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Infrared Limit: Nature of the Phase Transition

* Two near massless modes: Critical atomic field, dimer Goldstone mode
* Coleman-Weinberg phenomenon for coupled real fields: Radiatively induced first order PT

* Perform the continuum limit and integrate out massive modes:
Npure Goldstone action

S[ﬁa (1)] = 5] [(l)] +5G [ﬂ] + Sint [ﬂa (I)]

4/ pure Ising action

SI [(I)] — /ay(])a’u(]) —I—WLZ(])2 -+ 7\,(1)4 coupling term

Ising field: Real part of atomic field \/\
\ / Simt[D,0] = ik / 00 ¢

Frey, Balents; Radzihovsky&

Ising potential landscape:
Z_2 symmetry breaking

= |nteractions persist to arbitrary long wavelength (cf. decoupling spin waves)

= K # 0 Phase transition is driven first order by coupling of Ising and Goldstone mode
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Ising Quantum Critical Point around n="1

IN
* Plot the Ising-Goldstone coupling:

Si[9,0] = ik [ 9097 Yrma

0 I 2

Fa/ bl (—ga1)bs

* Symmetry argument:

* analysis of limiting cases n -> 0, n -> 2 and continuity: dimer compressibility must have zero crossing
» Ward identies for time-local gauge invariance and atom-dimer phase locking

=K must have zero crossing: true quantum critical Ising transition

- Estimate correlation length: f/a ~ kY~ |1 — n|_6

=weakly first order, broad near critical domain

= Second order quantum critical behavior is a lattice + constraint effect
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Appendix: Quantum Field Theory for Locally
Constrained Lattice Models




Implementation of the Hard-Core Constraint

* Introduce operators to parameterize on-site Hilbert space

T

toc,i

vac) =|a), a=0,1,2

* They are not independent:

Zt&,ifoc,i =1
04

Action of operators

Clj £ 40,
2)
* Representation of Hubbard operators:
y
aj — \/Elg’itl,i -+ tf,itoai |O>

A — 2t§’l.t2,i 1 tiitu
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Implementation of the Hard-Core Constraint

e Hamiltonian:
Hpor = _HZZtg,itZ,i +tf,it1,i + UztzT,iQ,i
i i

Hyijn = —J Z [tiitO,itg,jfl,j + \/i(f;,itl,itg,jtl,j +t;,it0,it1ijf2,j) T 2t§,itijt17it2,j}
(i,])

* Properties:

* Mean field: Gutzwiller energy (classical theory)

e interaction: quadratic } * Role of interaction and hopping reversed
« hopping: higher order e Strong coupling approach facilitated

* One phase is redundant: absorb via local gauge transformation

t,; = expiQo; |t,i t,i— exp—iQo;ti;, I2;— €Xp—iQo;12;

= e.g.t 0 can be chosen real
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Implementation of the Hard-Core Constraint

» Resolve the relation between t-operators (zero density) (SD, M. Baranov, A. Daley, P. Zoller ’09, '10)

7

f T f
h zt()l_tlz\/l f AL t21t2l — 1y (1=t i =15 127)

* justification: for projective operators one has from Taylor representation

X?=X— f(X)=f0)(1-X)+Xf(1) X=1-1t{ ;-1 h,
 Now we can interpret the remaining operators as standard bosons:

* on-site bosonic space H, = {\n>l1 \m}lz}, nm=0,1,2,...

e decompose into physical/unphysical space: ]—5 — Q’i b U;

7 = {]0);[0)7, 11);0)7,10); [1)7} ()

» correct bosonic enhancement factors on physical subspace \/ﬁ =0,1 ’2 :

* the Hamiltonian is an involution on P and U:

“atoms”
-
\/
[E—

H = Hpp+ Hyy

e remaining degrees of freedom: “atoms” and “dimers” ‘O>12 ‘ 1>12 ‘2>12

= similarity to Hubbard-Stratonovich transformation “dimers”
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Implementation of the Hard-Core Constraint

* The partition sum does not mix U and P too:

/ = TI”GXp—ﬁH = Trpp €Xp—Bpr +Tryy GXp—BHUU

 Need to discriminate contributions from U and P: Work with Effective Action

* Legendre transform of the Free energy W[]] — logZ[J]
SW1J]
_ T __
F[X] o _W[‘]] T /‘I £ — oJ Quantum Equation of Motion for J=0
» Has functional integral representation: N
oI’
exp—Ly| = /QDSXexp —S|x + ox| +/JT5)c, J = %

Slx = (t1,02)] = /d’c(sz,iam,i+t§,ia«;tz,i+H[t1,f2])

e Usually: Effective Action shares all symmetries of S
* Here: symmetry principles are supplemented with a constraint principle
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Condensation and Thermodynamics

* Physical vacuum is continuously connected to the finite density case:

Introduce new, expectationless operators by (complex) Euler rotation /«-é

?: (t07t17t2)T Vi :'."" P

v e
e

« Hamiltonian in new coordinates takes form: \ e 1/ 4
.

Quadratic part: Spin waves (Goldstone for n > 0)

~S
H = Egw + Hsw + Hing

N !

Mean field: Gutzwiller Energy higher order: interactions

>

thermodynamic long distance

interactions
condensation
spin waves

interactions interactions
condensation
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The requantized Gutzwiller model

e Hamiltonian to cubic order is of Feshbach type:

e quadratic part:

Hpor = Z(U - 2:“)”2,1‘ —Hi \

Y V)

detuning from atom level

* leading interaction: \/\
\

two separate atom’s energy

Dimer energy

Hiin = —J Y [t} 01,5+ V2013 it j+1], f,jfz,j)]
)
(bilocal) dimer splitting into atoms

 Compare to standard Feshbach models:

detuning ~ 1/U

here: detuning ~ U

= Wwe can expect resonant (strong coupling) phenomenology at weak coupling

Hin=—J Y [t} (1 =nyi—np) (1 =nyj— o)t j+ V2003 (1 =nyj—mo )t j+1] (1 —npi—mo)t] it ) +2t§,it27jt;jt17i}
(i,J)
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VaCU U m P rO b I e m S dimer excitation

N
* The physics at n=0 and n=2 are closely connected: n=0 @/@/@/@/@/@/

e “vacuum”: no spontaneous symmetry breaking

* low lying excitationsl: | n=2 @/ \8/@/\8/\8/\/

* n=0: atoms and dimers on the physical vacuum
* n=2: holes and di-holes on the fully packed lattice /M
di-hole excitation
* Two-body problems can be solved exactl _
) y G d'(K) =AW+ A M
* Bound state formation: G; (w —q = ()) — 0

1 :/(;zic)ld ] 1 >Mm >W >QMm

an|U| + by —Ey +c¢,/d) (1 —cosqey)

Eb/JZ
n=0: ay=1, bg =0, cg =2 .

= reproduces Schrddinger Equation: benchmark

= Square root expansion of constraint fails 2f Leld
- ue

n=2: as=4, by =—6+3E, ¢y =4 _3

= di-hole-bound state formation at finite U in 2D U/Jz




